
An effective refinement strategy for KNN text classifier

Songbo Tana,b,*

aSoftware Department, Institute of Computing Technology, Chinese Academy of Sciences, P.O. Box 2704, Beijing 100080, People’s Republic of China
bGraduate School of the Chinese Academy of Sciences, People’s Republic of China

Abstract

Due to the exponential growth of documents on the Internet and the emergent need to organize them, the automated categorization of

documents into predefined labels has received an ever-increased attention in the recent years. A wide range of supervised learning algorithms

has been introduced to deal with text classification. Among all these classifiers, K-Nearest Neighbors (KNN) is a widely used classifier in text

categorization community because of its simplicity and efficiency. However, KNN still suffers from inductive biases or model misfits that

result from its assumptions, such as the presumption that training data are evenly distributed among all categories. In this paper, we propose a

new refinement strategy, which we called as DragPushing, for the KNN Classifier. The experiments on three benchmark evaluation

collections show that DragPushing achieved a significant improvement on the performance of the KNN Classifier.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: KNN; Text classification; Information retrieval; Data mining
1. Introduction

With the exponential growth of textual information

available from the Internet, there has been an emergent need

to find and organize relevant information in text collections.

For this purpose, automatic text categorization becomes a

significant tool to utilize text information efficiently and

effectively. Text categorization aims to automatically place

the pre-defined labels on previously unseen documents. It is

an active research area in information retrieval, machine

learning and natural language processing. In the research

community, the dominant approach to this problem is based

on machine learning techniques: a general inductive process

automatically builds a classifier by learning, from a set of

pre-classified documents, the characteristics of the cat-

egories. A wide range of supervised learning algorithms has

been applied to this area, such as K-Nearest Neighbor

(KNN) (Sebastiani, 2002), Centroid-Based Classifier (CB)

(Han & Karypis, 2000), Naive Bayes (Sebastiani, 2002),

Decision Trees (Sebastiani, 2002), Winnow (van Mun),
0957-4174/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2005.07.019

* Address: Software Department, Institute of Computing Technology,

Chinese Academy of Sciences, P.O. Box 2704, Beijing 100080, People’s

Republic of China. Tel.: C86 10 8844 9181x713; fax: C86 10 8845 5011.

E-mail address: tansongbo@software.ict.ac.cn
Voting (Kjersti Aas & Line Eikvil), and Support Vector

Machines (SVM) (Sebastiani, 2002).

Among all these algorithms, K-Nearest Neighbor is a

widely used text classifier because of its simplicity and

efficiency. Its training-phase consists of nothing more than

storing all training examples as classifier, thus it has often

been called as lazy learner since ‘it defers the decision on

how to generalize beyond the training data until each new

query instance is encountered’ (Sebastiani, 2002).

In despite of its merits, K-Nearest Neighbor still suffers

from inductive biases or model misfits. For examples, it

takes the assumption that training data are evenly distributed

among all categories. In practice, however, there is no

guarantee that the training set is balanced populated, such as

Reuter-21578 and TDT-5, and especially for Reuter-21578

in which the documents are extremely unevenly distributed.

For unbalanced text corpora, the majority class tends to have

more examples than minority category in the K-nearest-

neighbor set for one test document d. If we employ

traditional KNN decision rule to classify the test document

d, the test document d0 tends to be assigned the majority class

label. As a result, the big category tends to have high

classification accuracy, while the other the minority class

tends to have low classification accuracy. Therefore, the total

performance of KNN will be inevitably harmed.

In this work, we propose DragPushing as a refinement

strategy to enhance the performance of KNN by means of
Expert Systems with Applications 30 (2006) 290–298
www.elsevier.com/locate/eswa

http://www.elsevier.com/locate/eswa


S. Tan / Expert Systems with Applications 30 (2006) 290–298 291
on-line modification of the KNN classifier models. The

main idea behind my strategy is that we could take

advantage of training errors to successively refine classifi-

cation model on the training data. Furthermore, our

technique is very simple and flexible, which requires

nothing more than one classification method.

Since KNN uses all training documents to predict labels of

test documents, we can take all training documents within one

class as class-representative of that category. If one training

example d0 labeled as A is misclassified into the class B, then

our technique ‘drag’ the class-representative (all examples in

class A) AR to the example, and ‘push’ the class-representative

BR against the example. That is to say, DragPushing increases

the similarities of all or most examples in class A to the

example d0 while reduces the similarities of all or most

examples in class B to the example d. Obviously, after the

DragPushing, the correct class A tends to put more examples

in K-nearest-neighbor set and these nearest neighbors share

larger similarities with test document d, and vice versa.

Consequently, after a few times of DragPushing operation,

the document d0 will be more likely to be correctly classified

by the refined KNN classifier.

Extensive experiments conducted on three benchmark

document collections show that the DragPushing Strategy

achieves a significant improvement for KNN and still shares

the excellent properties of KNN, i.e. simplicity and

efficiency.

The rest of this paper is constructed as follows. Section 2

reviews related work for performance improvement on text

classifiers. Section 3 describes the traditional KNN

classifier. Application of DragPushing Strategy to KNN is

introduced in the Section 4. Experimental results are given

in Section 5. Finally, Section 6 concludes the paper.
2. Related work

Many researches to improve the performance of text

classifier, by alleviating the problem of model misfits, have

been conducted in information retrieval community. One of

the popular frameworks is meta-learning or classifier

committees (Larkey & Croft, 1996), which are based on

the idea that, given a task that requires expert knowledge to

perform, k experts may be better than one if their individual

judgments are appropriately combined. In text categoriz-

ation community, the scheme is to apply k different

classifiers to the same classification task and then combine

their predictions appropriately. A classifier committee is

characterized by two specialties: a choice of k classifiers and

a choice of a combination function. Larkey’s experiment

(Larkey & Croft, 1996) on classifier committees seemed to

provide strong evidence to the statement that classifier

committees can somewhat profits from the complementary

strengths of their individual members.

As compared to classifier committees, our strategy does

not need to train multiple different classifiers on total
training data. Instead, our method merely refines a classifier

using the misclassified examples of the training data.

Consequently, the CPU time consumed by our technique

is much less than classifier committees.

Another popular framework is Voting method (Sebastiani,

2002; Kjersti Aas & Line Eikvil), which combines the

predictions of multiple same classifiers to boost classification

accuracy. This process is often denoted as Voting. Voting

algorithm takes a classifier and training set as input and trains

the classifier multiple times on different versions of the

training set. The generated classifiers are then unified to

create a final classifier that is used to categorize the test set.

Voting algorithms can be divided into two types: Bagging

and Boosting. The main difference between the two types is

the way the different versions of the training set are created.

Bagging use a uniform probability to select a new training set

while Boosting according to how often one example was

misclassified by previous classifiers to select one example to

create a new training set.

Compared with Voting, our strategy does not need to

train multiple same classifiers on total training data. Instead,

our method merely refines a classifier using the misclassi-

fied examples of the training data. Therefore, the training

and prediction of Voting method is much slower than

DragPushing.

Error-Correcting Output coding (ECOC) is also a form

of combination of multiple classifiers (Rayid Ghani). The

ECOC method is borrowed from data transmitting task in

communication. Its main idea is to add redundancy to the

data being learned (transmitted) so that even if some errors

occur due to the biases (noises) in the learning process

(channel), the data can be correctly classified (received) in

prediction stage (at the other end). It works by converting a

multi-class supervised learning problem into a large number

(L) of two-class supervised learning problems (Rayid

Ghani). Any learning algorithm that can handle two-class

learning problems, such as Naı̈ve Bayes (Sebastiani, 2002),

can then be applied to learn each of these L problems. L can

then be thought of as the length of the codewords with one

bit in each codeword for each classifier.

Our technique is different significantly from ECOC for

our approach needs no converting of a multi-class problem

into multiple two-class problems and combination of

multiple binary classifiers. Like Voting scheme, the training

and prediction of ECOC is also much slower than

DragPushing.
3. The KNN classifier

To classify an unknown document d0, the KNN classifier

ranks the document’s neighbors among the training

documents, and use the class labels of k most similarity

neighbors to predict the class of the input document. To

measure the similarity efficiently, we make use of the cosine

distance as follows:



S. Tan / Expert Systems with Applications 30 (2006) 290–298292
Simððd1; ðd2Þ Z
ðd1†ðd2

jjðd1jj2jjðd2jj2
Z

PV
lZ1

d1l !d2lffiffiffiffiffiffiffiffiffiffiffiffiPV
lZ1

d2
1l

s ffiffiffiffiffiffiffiffiffiffiffiffiPV
lZ1

d2
2l

s (1)

where V denotes the dimension size of document vector ðd1,
ðd2.

The classes of these neighbors are weighted using the

similarity of each neighbor to d0 as follows:

scoreððd0;CiÞ Z
X

dj

!
2KNNðd0

!
Þ

Simððd0; ðdjÞdððdj;CiÞ (2)

where KNNððdÞ indicates the set of K-nearest neighbors of

document ðd0. dððdj;CiÞ stands for the classification for

document ðdj with respect to class Ci, that is,

dðdj

!
;CiÞ Z

1 dj

!
2Ci

0 dj

!
;Ci

8<
: (3)

Consequently, the decision rule in KNN classification

can be written as:

C Z arg maxci
ðscoreððd0;CiÞÞ

Z arg maxci

X
ðdj2KNNððd0Þ

Simððd0; ðdjÞdððdj;CiÞ

0
@

1
A (4)

KNN is a lazy learning instance-based method that

does not have an off-line training phase. The main

computation is the on-line scoring of training documents

given a test document to find the k nearest neighbors. We

use D and T to stand for the size of training corpus and

test corpus, respectively. The computation of similarities

of d0 to all documents in the training corpus can be done

in O(DV). And the sorting of the D similarities takes

O(D log(D)). Accordingly the total running time is

O(T(D log(D)CDV)).
4. DragPushing strategy based KNN classifier

4.1. The motivation

As discussed in Section 1, the KNN Classifier itself often

introduces inductive biases for it takes the assumption that

training data are equally distributed among all categories. If

the supposition is violated by unbalance of training data, the

KNN classifier often delivers quite poorer performance.

Consequently, we can take the inductive biases introduced

by KNN as the main factor leading to higher error rate,

including training error rate and test error rate. Accordingly,

very intuitively and straightforward, we could make use of

training errors to refine the KNN classifier by ‘dragging’ and

‘pushing’ operation, as we called ‘DragPushing Strategy’.
In order to execute the ‘dragging’ and ‘pushing’

operation on class-representatives, we introduced a weight

vector Wi for each class Ci with equivalent size as total

vocabulary V. Note that we initialize Wil Z1, which

indicates that no ‘dragging’ and ‘pushing’ operation is

performed. Then we can derive the modified similarity

measurement formula as follows:

Simððd1; ðd2; ðW iÞ Z

PV
lZ1

wil !d1l !d2lffiffiffiffiffiffiffiffiffiffiffiffiPV
lZ1

d2
1l

s ffiffiffiffiffiffiffiffiffiffiffiffiPV
lZ1

d2
2l

s (5)

In the same way, we can amend the class score formula

as follows:

scoreððd0;Ci; ðW iÞ Z
X

ðdj2KNNððd0Þ

Simððd0; ðdj; ðW iÞdððdj;CiÞ (6)

Given a training set consisting of only two categories, i.e.

the class A and the class B. d0 stands for the document from

category A. If score(d0,A,WA) calculated by Eq. (6) is

smaller than score(d0,B,WB), then we misclassify document

d0 into the class B. Consequently, we utilize ‘drag’ to

enlarge the weight vector WA, and use ‘push’ to reduce the

weight vector WB. Accordingly after a few times of

executing ‘DragPushing’ operation score(d0,A,WA) has the

tendency to be bigger than the score(d0,B,WB) and the

refined classifier can be more likely to correctly classify

the document d. This is the refinement mechanism of

DragPushing strategy for the KNN Classifier.

Now we give the reason why DPSKNN can overcome the

problem of imbalance of text corpus. If we take class A as

minority category and class B as majority category, then

according to traditional KNN decision rule, the examples in

category A tends to be classified into class B. As a result, the

weight vector WA has more times of ‘Drag’ operation than

WB. After a few rounds of ‘DragPushing’ operation, the

minority category A tends to have much larger weight vector

than majority category B. Consequently, the different weight

vector associated with each category could counteract the

impact of unbalance of training corpus to a high degree.
4.2. DragPushing strategy based KNN classifier
4.2.1. Initialization

To start, we need to load the training data and parameters

including max-iteration-step, drag_weight and push_

weight. In order to guarantee the validity and rationality

of each change of the weight Wi for each class Ci, we

introduce two centroids: the unaltered sum centroid Cu
i that

keeps unchanged in the training phase and the altering

sum centroid Ca
i that updates itself with each ‘dragging’ and

‘pushing’ operation. We calculate the unaltered sum

centroid Cu
i as following formula:



Fig. 1. The outline of dragpushing strategy based KNN classifier.

1 Available at http://www.research.att.com/wlewis/reuters21578.html.
2 Downloadable at http://www-2.cs.cmu.edu/afs/cs/project/theo-11/

www/wwkb.
3 http://www.ldc.upenn.edu/Projects/TDT5/.

S. Tan / Expert Systems with Applications 30 (2006) 290–298 293
ðC
u

i Z
X
d2ci

ðd (7)

and initialize Ca
i as Cu

i , i.e. Ca;0
il ZCu

il. As discussed above,

we initialize W0
il Z1. Note that ‘0’ denotes current iteration-

step, i.e. the 0th iteration-step.

4.2.2. DragPushing

In each iteration, we need to classify all training

documents. If one document d0 labeled as class A is

classified into class B, DragPushing is used to adjust Ca;0
A ,

Ca;0
B , W0

A and W0
B by following formulas:

Ca;0C1
A;l Z Ca;0

A;l Cdrag_weight!d0l if d0lO0 (8)

W0C1
A;l Z

Ca;0C1
A;l

Cu
A;l

if d0l O0 (9)

Ca;0C1
B;l Z

Ca;0
B;l Kpush_weight!d0lpush_weight!d0l!Ca;0

B;l

0 push_weight!d0lRCa;0
B;l

(

(10)

WoC1
B;l Z

Ca;oC1
B;l

Cu
B;l

if d0lO0 (11)

It is worth mentioning that we call the formulas (8) and (9)

as ‘drag’ formulas and (10) and (11) as ‘push’ formulas.

Obviously after the ‘Drag’ and ‘Push’ operation, all or most of

elements in the weight vector WA will be increased while all

or most of elements in the weight vector WB will be decreased.

As a result, the similarities of all or most documents in the

class A to document d0 will be increased and the similarities of

all or most documents in the class B to document d0 will be

decreased. Accordingly, score(d,A,WA) involved with docu-

ment d0 and the class A will be enlarged while score(d,B,WB)

related to document d0 and the class B will be reduced.

The weights, i.e. drag_weight and push_weight, are used

to control the step-size of ‘drag’ and ‘push’. It is worth

mentioning that in our experiments, if we set both

drag_weight and push_weight to 1.0, DragPushing could

consistently achieve relatively stable significant perform-

ance improvement on the KNN classifier.

4.2.3. Termination

In practice, it is rather hard to make a decision how many

iteration steps should be run to refine the KNN Classifier to

be the best. But in accordance with our practice, if we set

max-iteration-step to 5, we could always obtain a high-

performance refined classifier (Fig. 1).

4.2.4. Time requirements

Assume that there are D training documents and T testing

documents. The number of total words is V and Max-

Iteration-Step is fixed as M. For one iteration of
DragPushing phase, we need to classify D training

documents and for each misclassified document we need

to update weight vectors of two categories; therefore, the

running time is O(D(DVCD log(D)C4V)), i.e. O(D(DVC
D log(D))). Consequently, the training of DPSKNN can be

done in O(MD(DVCD log(D))). Since the final classifier

obtained by DragPushing still consists of all training

examples, the test time complexity for DPSKNN is the

same as the KNN Classifier, i.e. O(T(DVCD log(D))).
5. Experiment results
5.1. The datasets

In our experiment, we use three corpora: Reuter-215781,

Industry Sector2 and TDT-53.
5.1.1. Reuter-21578

The Reuters-21578 text categorization test collection

contains documents collected from the Reuters newswire in

1987. It is a standard text categorization benchmark and

contains 135 categories. We used its subset: one consisting

of 92 categories and in total 10,346 documents.
5.1.2. Sector-48

The Industry Section dataset is based on the data made

available by Market Guide, Inc. (www.marketguide.com).

The set consists of company homepages that are categorized

in a hierarchy of industry sectors, but we disregarded the

hierarchy. There were 9637 documents in the dataset, which

were divided into 105 classes. We use a subset called as

Sector-48 consisting of 48 categories and in all 4581

documents.

http://www.marketguide.com
http://www.research.att.com/~lewis/reuters21578.html
http://www-2.cs.cmu.edu/afs/cs/project/theo-11/www/wwkb
http://www-2.cs.cmu.edu/afs/cs/project/theo-11/www/wwkb
http://www.ldc.upenn.edu/Projects/TDT5/


4 Downloadable at http://www.rulequest.com/Personal/c4.5r8.tar.gz.

S. Tan / Expert Systems with Applications 30 (2006) 290–298294
5.1.3. TDT-5

TDT-5 is the NIST Topic Detection and Tracking text

corpus version 1.1 released in September 10, 2004. This

corpus contains news data collected daily from news

sources in three languages (American English, Mandarin

Chinese and Arabic), over a period of 6 months (April 1–

September 30 in 2003). The documents were manually

annotated using 250 target topics, approximately 25% of the

topics are monolingual English (ENG), 25% are mono-

lingual Mandarin Chinese (MAN), 25% are monolingual

Arabic (ARB), and 25% are multilingual. We selected the

English documents having annotated topics. The resulting

dataset contains 126 categories and in total 6364 documents.

5.2. The performance measure

To evaluate a text classification system, we use the F1

measure that combines recall and precision in the following

way:

Recall Z
number of correct positive predictions

number of positive examples
(12)

Precision Z
number of correct positive predictions

number of positive predictions
(13)

F1 Z
2!Recall!Precision

ðRecall CPrecisionÞ
(14)

For ease of comparison, we summarize the F1 scores over

the different categories using the Micro- and Macro-

averages of F1 scores:

Micro-F1 Z F1 over categories and documents (15)

Macro-F1 Z average of within-category F1 values (16)

The Micro- and Macro-F1 emphasize the performance of

the system on common and rare categories, respectively.

Using these averages, we can observe the effect of different

kinds of data on a text classification system (Kian Ming

Adam Chai, Hwee Tou Ng, & Hai Leong Chieu, 2002).

5.3. Experiment design

In all our experiments, we adopt three-fold cross-

validation. We split each dataset into three parts. Then we

use two parts for training and the remaining third for test.

We conduct the training-test procedure three times and use

the average of the three performances as final result.

We employed Information Gain as feature selection

method for it consistently performs well in most cases

(Yang & Pedersen, 1997). Algorithms are coded in CCC
and running on a Pentium-4 machine with single 2.0 GHz

CPU.

Except for C4.5 and NB, we utilize TFIDF other than

binary word occurrences as input features. The formula for

calculating TFIDF can be written as follows:
Wðt; ÐdÞ Z
tf ðt; ÐdÞ!logðD=nt C0:01ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t2Ðd ½tf ðt;

ÐdÞ!logðD=nt C0:01Þ�2
q (17)

where D is the total number of training documents, and nt is

the number of documents containing the word t. tf ðt; ðdÞ
indicates the occurrences of word t in document ðd .

In our experiments, we only run Balanced Winnow for it

consistently yields better performance than Positive

Winnow (van Mun). The Balanced Winnow keeps two

weights for each feature l in category i, wC
il and wK

il . The

initial values for Balanced Winnow are wC
il Z2:0 and

wK
il Z1:0. The initial threshold was set to 1.0. The promotion

parameter a and the demotion ß (learning rates) were fixed

as 1.2 and 0.8, respectively. In our experiments we train

Winnow for 40 rounds over the training data.

It is worth noticing that except for Winnow we do not

introduce any thresholds investigated by Yang (2001)

because the adjustment of thresholds may incur significant

computational costs.

For the Centroid Classifier, we compute its normalized

centroid using following equation:

ðC
N

Z

P
d2Ci

ðd

jj
P

d2Ci

ðdjj2
(18)

For decision tree, we use Quinlan’s source code C4.5

Release 8.4 All parameters are left as default.

In our experiments, we adopt multi-variate Bernoulli

event model that has been used for text classification by

numerous people (Kalt, 1996). We estimate the word

probability using the following formula:

pðtljci; qÞ Z
Nil Ca1

Ni Ca2

(19)

Nil is the number of documents in class i with word tl. In our

experiments reported below, we set a1Z0.0001 and a2Z
0.0002.
5.4. Comparison and analysis

Now we present and discuss the experimental results.

Here we compare DPSKNN against KNN, Centroid,

Winnow, NB and C4.5 on three text corpora.

Tables 1 and 2 show the best-performance comparison in

MicroF1 and MacroF1. We set kZ7 for KNN and kZ60 for

DPSKNN. Note that for DPSKNN, Max-Iteration-Step is set

to 5, Drag-Weight and Push-Weight are both fixed as 1.0.

DPSKNN outperforms all other methods except for

Centroid. DPSKNN beats KNN by a wide margin on all

corpora.

On Reuter-21578, the MicroF1 of DPSKNN is 84.97%,

which is approximately 14% higher than that of C4.5, 9%

http://www.rulequest.com/Personal/c4.5r8.tar.gz


Table 2

The best MacroF1 of different methods on three corpora

DPSKNN KNN Centroid Winnow NB C4.5

Reuter-21578 0.5530 0.5089 0.5617 0.4891 0.3897 0.3256

Sector-48 0.8585 0.8235 0.8152 0.8349 0.8278 0.6570

TDT-5 0.7627 0.7214 0.7267 0.7042 0.7363 0.5788

Table 1

The best MicroF1 of different methods on three corpora

DPSKNN KNN Centroid Winnow NB C4.5

Reuter-21578 0.8497 0.8218 0.7818 0.8263 0.7582 0.7131

Sector-48 0.8544 0.8188 0.8055 0.7966 0.8184 0.6523

TDT-5 0.9251 0.9136 0.8877 0.8895 0.8801 0.8226

S. Tan / Expert Systems with Applications 30 (2006) 290–298 295
higher than that of NB, 7% higher than that of Centroid and

3% higher than that of KNN, and 2% higher than that of

Winnow. On Sector-48, the MicroF1 of DPSKNN beats

C4.5 by about 20%, Winnow by 6%, Centroid by 5%, both

KNN and NB by approximately 4%. In a word DPSKNN

yields top-notch performance among these algorithms.
Fig. 2. Performance curves of differe

Fig. 3. Performance curves of diffe
Consequently, we can say that DPSKNN is a competitive

algorithm in text classification.

Figs. 2–4 display the MicroF1 and MacroF1 curves for

different classification methods after term selection using

Information Gain on three text collections. We set kZ7 for

KNN and kZ60 for DPSKNN. Note that for DPSKNN,
nt methods on Reuter-21578.

rent methods on Sector-48.



Fig. 4. Performance curves of different methods on TDT-5.

S. Tan / Expert Systems with Applications 30 (2006) 290–298296
Max-Iteration-Step is set to 5, Drag-Weight and Push-

Weight are both fixed as 1.0. On all three corpora, DPSKNN

exceeds all the other five methods under almost all feature

numbers except for Reuter-21578. We can see an

observation that C4.5 yields the worst performance on

three corpora when feature number is bigger than 2000 but it

is insensitive to the feature number.
Fig. 6. Performance curves of DPSKNN vs.

Fig. 5. Performance curves of KNN and
Fig. 5 shows the performance of KNN and DPSKNN vs.

the nearest neighbors k. Note that the feature number is set

to 10,000, Max-Iteration-Step is set to 5, Drag-Weight and

Push-Weight are both fixed as 1.0. With the increase of k,

KNN delivers worse and worse results on both MicroF1 and

MacroF1. Consequently, in our experiments, we set kZ7 for

KNN. On the contrary, DPSKNN yields better and better
Max-Iteration-Step on three corpora.

DPSKNN vs. k on three corpora.



Fig. 7. Performance curves of DPSKNN vs. Push-Weight on three corpora.

S. Tan / Expert Systems with Applications 30 (2006) 290–298 297
results for Reuter-21578 and Sector-48, and the peaks of the

four curves appear around 60. For TDT-5, the number k of

nearest neighbors hardly exerts influence on MicroF1 and

results in a bit decrease on MacroF1. Accordingly, in order

to obtain more stable results for all corpora, we fix kZ60 for

DPSKNN.

Fig. 6 displays the performance comparison of DPSKNN

vs. different Max-Iteration-Step on three corpora. Note that

the feature number takes 10,000 and nearest neighbors k

takes 60. Drag-Weight and Push-Weight are both fixed as

1.0. Max-Iteration-Step taking 0 means that DPSKNN uses

no DragPushing operation at all, namely, the KNN Classifier.

Form the two figures, we can see a wide margin improvement

is achieved by running only one round of DragPushing

operation. DPSKNN produces the best results around 4 for

Reuter-21578, around 5 for TDT-5 and around 10 for Sector-

48. More over, the Max-Iteration-Step bigger than 3 hardly

makes a difference for categorization quality. Consequently,

the empirical optimal value for Max-Iteration-Step

approaches 5.

Fig. 7 illustrates the performance comparison of

DPSKNN using different Push-Weight on three corpora.

Note that the feature number takes 10,000 and nearest
Fig. 8. Performance curves of DPSKNN
neighbors k takes 60. Drag-Weight is fixed as 1.0. From the

two figures we could observe that the MicroF1 curve of

Reuter-21578 begins to decrease after 1.0 and the MacroF1

curve of TDT-5 also begins to descend after 0.8, while the

other curves consistently heighten with the increase of Push-

Weight. Consequently, the relatively stable value for Push-

Weight is about 1.0.

Fig. 8 demonstrates the performance comparison of

DragPushing using different Drag-Weight on three corpora.

Note that the feature number takes 10,000 and nearest

neighbors k takes 60. Push-Weight is set to 1.0. The peak

value of DPSKNN occurs near 0.2 for Sector-48, near 0.6 for

Reuter-21578 and near 0.8 for TDT-5. Unlike Push-Weight

the stable value for Drag-Weight ranges from 0.2 to 0.8.
6. Conclusion remarks

In this paper we proposed an effective refinement

strategy, called DragPushing Strategy, for the KNN

classifier. Our technique does not need to generate

sophisticated models but only requires simple statistical

data and the traditional KNN classifier.
vs. Drag-Weight on three corpora.



S. Tan / Expert Systems with Applications 30 (2006) 290–298298
The experiments on three benchmark evaluation collec-

tions showed that DPSKNN could make a significant

difference on the performance of the KNN Classifier and

delivered better performance than other five commonly used

methods.

The results reported here are not necessarily the best that

can be achieved. Our feature effort is to seek new techniques

to enhance the performance of DPSKNN and to apply

DragPushing to other classifiers.
References

Sebastiani, Fabrizio (2002). Machine learning in automated text categor-

ization. ACM Computing Surveys, 34(1), 1–47.

Han, E., & Karypis, G. (2000). Centroid-based document classification

analysis and experimental result PKDD 2000.
Kjersti Aas, Line Eikvil. Text ctegorisation: A survey. http://citeseer.ist.

psu.edu/aas99text.html.

Larkey, L. S., & Croft, W. B. (1996). Combining classifiers in text

categorization SIGIR pp. 289–297.

Chai, Kian Ming Adam, Ng, Hwee Tou, & Chieu, Hai Leong (2002).

Bayesian online classifiers for text classification and filtering SIGIR pp.

97–104.

P.P.T.M. van Mun. Text Classification in information retrieval using

winnow. http://citeseer.ist.psu.edu/cs.

Yang, Y., & Pedersen, Jan O. (1997). A comparative study on feature

selection in text categorization ICML pp. 412–420.

T. Kalt and W.B. Croft. A new probabilistic model of text classification and

retrieval. Technical Report IR-78. University of Massachusetts Center

for Intelligent Information Retrieval. 1996 http://ciir.cs.umass.edu/

publications/index.shtml.

Rayid Ghani. Using error-correcting codes for text classification. http://

citeseer.ist.psu.edu/ghani00using.html.

Yang, Y. (2001). A study on thresholding strategies for text categorization

SIGIR pp. 137–145.

http://citeseer.ist.psu.edu/aas99text.html
http://citeseer.ist.psu.edu/aas99text.html
http://citeseer.ist.psu.edu/cs
http://ciir.cs.umass.edu/publications/index.shtml
http://ciir.cs.umass.edu/publications/index.shtml
http://citeseer.ist.psu.edu/ghani00using.html
http://citeseer.ist.psu.edu/ghani00using.html

	An effective refinement strategy for KNN text classifier
	Introduction
	Related work
	The KNN classifier
	DragPushing strategy based KNN classifier
	The motivation
	DragPushing strategy based KNN classifier

	Experiment results
	The datasets
	The performance measure
	Experiment design
	Comparison and analysis

	Conclusion remarks
	References


